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Using the magnetic symmetry structure of non-Abelian gauge theories, we analyze the
flux tube formulation and its implications on the hadronic Regge trajectories and the
confinement of color isocharges in magnetically condensed (with as well as without
the electric excitations) QCD vacuum. Starting with the fiber bundle structure of QCD,
the dual potentials are used to construct the QCD Lagrangian which has been shown
to develop a unique flux tube configuration in its dynamically broken phase. The
vector mass mode of the condensed vacuum has been shown to play a leading role in
flux tube energy and other confinement parameters. Using the flux tube energy and the
angular momentum, the Regge trajectories for hadrons have been obtained and the linear
confining properties of dual QCD have been established. The dyonic flux tube structure
of the condensed QCD vacuum has been obtained by inducing the electric excitation of
QCD monopoles and the confining nature along with the linearity of Regge trajectories
in dyonically condensed QCD vacuum are shown to remain intact. Implications of the
modification in Regge slope parameter, on improving the confining properties of dual
QCD vacuum are also discussed.
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1. INTRODUCTION

In the history of the diversified ways of the study of the fundamental building
blocks of matter and their interactions, the quark model of Gell-Mann and Zweig
(Gell-Mann, 1962, 1964; Zweig) occupies a special position. Though, all hadrons
are composed of quarks with three color degrees of freedom as seen by deep
inelastic scattering experiments, the colored quarks are not the part of the phys-
ical spectrum and are permanently confined to the interior of hadrons. Quantum
Chromodynamics (QCD) is a most popular modern gauge theory dealing with the
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strong interactions of hadrons (Gross and Wilczek, 1973; Politzer, 1973) and the
confinement problem of QCD is the most challenging problem of the present day
theoretical physics. This is mainly because of the highly nonperturbative nature of
QCD in low-energy region where it essentially becomes a strong coupling gauge
theory. Consequently, the infrared sector of QCD needs to be explored with some
nontrivial techniques and, therefore, some effective models (Baker et al., 1991;
Pandey and Chandola, 2000; Suganuma et al., 1998; Suzuki, 1988; ’t Hooft, 1978)
have been developed. In this connection, the dual formulation of QCD has played
an important role in the explanation of the confinement mechanism and other
low energy properties of hadrons by incorporating a direct analogy of the nature
of QCD vacuum with that of the conventional superconductivity (Mandelstam,
1976, 1980; Nambu, 1974; Nielsen and Olesen, 1973). In such a dual picture,
the colored monopole condensation plays the role analogous to the cooper-pair
condensation in the conventional superconductivity. The idea has got further boost
by ’t Hooft’s Abelian projection technique (’t Hooft, 1981, 1975) which indicates
that the topological objects (viz, monopoles and dyons) (Julia and Zee, 1975;
Prasad and Sommerfield, 1975) are the essential ingredients of the gauge the-
ories to explore the superconducting nature of the QCD vacuum. Further, the
lines of color electric flux in QCD are believed to be aligned to form a thin flux
tube connecting the opposite color electric charges having a definite spin, flavor
and momenta (Glendenning and Matsui, 1983; Parisi, 1975; Wyld, 1976; Wyld
and Cutter, 1976). Recent lattice gauge theory (LGT) calculations (Creutz, 1983;
Diacomo et al., 2002; Rothe, 1992; Suzuki and Yotsuyanagi, 1990) also confirm
the flux tube structure of the hadrons as well as the essential role of the topolog-
ical objects in explaining the confinement mechanism. With the introduction of
such topological objects in the dual QCD vacuum, the dual dynamics between
color isocharges and topological charges can be best ascribed by magnetic sym-
metry (Cho, 1980) which paves the way to formulate the QCD as a viable dual
gauge theory. Further, in view of the results of Witten and Schierholz (Schierholz,
1995; Witten, 1983) that the monopoles are necessarily dyons and the recent inter-
est (Akhmedov, 1998; Gonzalez-Arroyo and Simonov, 1996; Simonov, 1996) in
the models of QCD vacuum involving non-Abelian dyons, it is necessary to study
the dyonic excitations also in the context of non-Abelian QCD formulations. In the
present study, using the magnetic symmetry structure of QCD vacuum, we have
investigated the flux tube formulation from the energy point of view and analyzed
its implications over hadronic Regge trajectories and the confinement of color for
the cases when the QCD vacuum undergoes the state of either pure monopole or
dyonic condensation. Using the global topology of the gauge fields, the SU(2)
chromodynamic Lagrangian has been constructed in terms of the dual potentials
which has been shown to lead to the magnetically condensed state for the QCD
vacuum in its dynamically broken phase. Flux tube structure of the resulting dual
superconducting QCD vacuum has been analyzed and the confinement parameters
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are expressed in terms of the vector mass mode of the condensed vacuum. Deriving
the flux tube energy, the Regge trajectories for hadrons have been obtained and
the Regge slope parameter has been shown to depend on the glueball masses
and the strong coupling in dual QCD. The electric excitation of condensed
monopoles in dual QCD vacuum has been shown to lead it to the dyonic flux tube
structure where the dual superconducting and the confining nature of dual QCD
vacuum are shown to still remain intact. The linearity of the Regge trajectories in
dyonically condensed vacuum is also maintained. However, the Regge slope pa-
rameter is modified as a result of the increase in dyonic flux tube energy. Its impli-
cations on improving the confining properties of dual QCD vacuum are discussed.

2. MAGNETIC SYMMETRY STRUCTURE
AND SU(2) QCD LAGRANGIAN

In order to analyze the QCD as an infrared effective dual gauge theory,
let us first briefly review the magnetic symmetry and the topological structure
associated with the color gauge theory. The magnetic symmetry (Cho, 1980;
Pandey et al., 2001; Nandan et al., 2002) is defined as an additional isometry of
the internal fiber space in terms of a scalar multiplet described by a set of the
self-consistent Killing vector fields belonging to the adjoint representation of a
gauge group (G). The (4 + n) dimensional unified space may be identified as a
principal fiber bundle P (M,G) over space–time if we identify the quotient space
(P /G) as the base manifold (M) with the canonical projection � : P → M . For
the simplest case of the gauge group G = SU (2) with it’s little group H = U (1),
the magnetic symmetry, which restricts the connection to those whose holonomy
bundle becomes a reduced bundle, may be introduced in terms of a gauge-covariant
condition given by

Dµm̂ = (∂µ + gWµ×)m̂ = 0, (1)

where m̂ is a scalar multiplet which belongs to the adjoint representation of the
gauge group G. The exact solution of Eq. (1) leads to the gauge potential Wµ for
SU (2) gauge symmetry in the following form:

Wµ = Aµm̂ − g−1(m̂ × ∂µm̂), (2)

where m̂.Wµ ≡ Aµ is the color electric potential unrestricted by magnetic sym-
metry, while the second term on right hand side is completely determined by the
magnetic symmetry and is topological in origin. The magnetic symmetry may,
therefore, be used to describe the topological structure of the gauge theory and the
scalar multiplet m̂ may be viewed to define the homotopy of mapping �2(S2) as,
m̂ : SR

2 → S2 = SU (2)/U (1). The associated field strength is then given by

Gµν = Wν,µ − Wµ,ν + gWµ × Wν ≡ (Fµν + Bµν)m̂, (3)
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where Fµν = Aν,µ − Aµ,ν and Bµν = −g−1m̂.(∂µm̂ × ∂νm̂). The dual symmetric
separation of the gauge fields may be used to bring the topological structure of the
theory into dynamics explicitly using the magnetic gauge obtained by rotating m̂ to
a prefixed space–time independent direction in isospace as, m̂

U−→ ξ̂3 = (0, 0, 1)T .
Using the simple parameterization, m̂ = (sin α cos β, sin α sin β, cos α)T , and
choosing, U = exp(−αt2 − βt3), the gauge potential is obtained as

Wµ
U−→ W′

µ = (Aµ + Bµ)ξ̂3, (4)

where Bµ = g−1 cos α∂µβ. The associated gauge field strength in magnetic gauge
is then given by

Gµν
U−→ G′

µν ≡ (Fµν + Bµν)ξ̂3, (5)

which has the topological contribution as given by

Bµν = −g−1 sin α(∂µα∂νβ − ∂να, ∂µβ) ≡ Bν,µ − Bµ,ν. (6)

Since the magnetic charge is of topological in origin, it represents the monopole
field and therefore, in magnetic gauge, the topological properties of the magnetic
symmetry are brought into dynamics explicitly. In order to study the physical
implications of the associated dual potentials, we start with the gauge-invariant
dual QCD Lagrangian for SU(2) gauge group with a quark doublet source (ψ(x)),
given by

£ = −1

4
|Gµν |2 + ψ̄(x)iγ µDµψ(x) − m0ψ̄(x)ψ(x). (7)

In the Lagrangian given by Eq. (7), the topological objects appear as the point-
like singular objects and not as a regular field. However, in order to avoid such
undesirable features in the theory, one may use the dual magnetic potential B(d)

µ

and a complex scalar field (φ) at the same time for the topological object. A correct
field-theoretical analysis of such a nontrivial QCD vacuum may then be obtained
by SU(2) gauge-invariant Lagrangian which in the quenched approximation is
given as

£ = −1

4

∣∣B(d)
µν

∣∣2 + ∣∣(∂µ + i4πg−1B(d)
µ φ

)∣∣2
V (φ∗φ), (8)

where the field tensor B(d)
µν = 1

2εµνσρB
σρ = B(d)

ν,µ − B(d)
µ,ν . The Lagrangian (8) ex-

actly coincides with that of the Ginzburg–Landau theory of superconductivity and
may therefore be identified to generate the dynamical breaking of the magnetic
symmetry of QCD vacuum through the effective potential V (φ∗φ). The dynami-
cal breaking of magnetic symmetry by the effective potential ultimately leads to
the magnetic condensation of QCD vacuum which manifests itself in terms of
the appearance of two (vector and scalar) mass modes of the condensed vacuum.
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Such an effective potential is fixed by using the single-loop expansion technique
(Coleman and Weinberg, 1973) along with the requirement of ultraviolet finiteness
and infrared instability and is obtained in the following form:

V (φ∗φ) = 24π2

g4

[
φ4

0 + (φ∗φ)2

(
2 ln

φ∗φ
φ2

0

− 1

)]
, (9)

where φ0 represents the vacuum expectation value of the monopole field. The
field equations associated with the Lagrangian (8) may then also be derived in the
following form:(

∂µ − i4π

g
B(d)µ

) (
∂µ + i4π

g
B(d)

µ

)
φ + 24π2

g4

[
4φφ∗ ln

φφ∗

φ2
0

]
φ = 0, (10)

B(d)ν
µν, + i4π

g
(φ∗∂µφ − φ∂µφ∗) − 32π2

g2
B(d)

µ φφ∗ = 0. (11)

These equations govern the dynamics of QCD vacuum in its dynamically
broken phase and lead to a definite flux tube structure to the dual QCD vacuum
which may be shown to impart it the appropriate (linear) confining properties.

3. MAGNETIC CONDENSATION AND REGGE
TRAJECTORIES IN DUAL QCD

In order to explain the nature of the magnetically condensed dual QCD
vacuum, let us first analyze the field equations associated with the Lagrangian (8)
under the cylindrical symmetry. Taking the flux tube orientation along the z-axis
and keeping in view the uniqueness of the function φ(x), let us use the following
cylindrically symmetric ansatz

B(d) = −θ̂B(ρ), B
(d)
0 = 0, (12)

and

φ(ρ) = exp(i nθ )χ (ρ). (13)

The coupled nonlinear field equations associated with the Lagrangian (8) in the
static case may then be derived in the following form:

1

ρ

d

dρ

(
ρ

dχ

dρ

)
−

(
n

ρ
+ 4π

g
B

)2

χ − 24π2

g4

(
4χ2 ln

χ2

φ2
0

)
χ = 0, (14)

d

dρ

[
1

ρ

d

dρ
(ρB(ρ))

]
− 8π

g

(
n

ρ
+ 4π

g
B

)
χ2 = 0, (15)
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where the primes refer to the differentiation with respect to the variable ρ. The
appropriate boundary conditions for the finite energy vortex solutions are

B(ρ) = − ng

4πρ
,B0(ρ) = 0 and χ (ρ) = φ0 (f or ρ

lim−→ ∞), (16)

χ (ρ) = B(ρ) = B0(ρ) = 0 (f or ρ
lim−→ 0). (17)

For analyzing the energy contribution associated with the dual QCD field config-
uration governed by the Eqs. (14) and (15), the energy per unit length of the flux
tube may be calculated in the following form:

E(m)(B, χ ) = 2π

∫ ∞

0
ρdρ

[ (
1

2ρ2
(ρB)′2 + χ ′2

)
+

(
n

ρ
+ 4π

g
B

)2

χ2

+ 24π2

g4

(
φ4

0 + χ4

(
2 ln

χ2

φ2
0

− 1

))]
. (18)

The energy contribution, given by Eq. (18), gets minimized in its natural way
with the boundary conditions given by Eq. (16) for the large-distances which
enforces monopole condensation in the dual QCD vacuum and consequently the
localization of the color electric flux in the form of thin flux tubes. For further
simplification of the field Eqs. (14) and (15) and the flux tube energy in the the
magnetically condensed QCD vacuum, let us introduce some new functions as
given below.

r = 8π

g2

√
3φ0ρ, (19)

K(r) = 4π

g
ρB(ρ), (20)

H (r) = χ (ρ)

φ0
, (21)

which lead to the field equations or static configuration in the following form:

H ′′ + H ′

r
− (n + K)2

r
H − H 3 ln H = 0, (22)

K ′′ − K ′

r
− �(n + K)H 2 = 0, (23)

where � = 2π
3 αs and αs = g2

4π
is the strong coupling constant. In the absence of

any exact solution, the solutions of these equations in the asymptotic limit may be
obtained by using the boundary conditions given by Eq. (16) in the following form:

H (r) = 1 − AK0(r), (24)
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K(r) = −n + BrK1

(√
2παs

3
γ

)
, (25)

where K0 and K1 are the modified Bessel’s functions and A and B are the integration
constants. Using Eq. (19), the solution given by Eq. (25) may be reexpressed as

K(ρ) = −n + Cρ
1
2 exp(−mBρ), (26)

where C is a constant and mB = 4
√

2πg−1φ0 is the vector mass mode, the inverse
of which leads to the penetration depth (λ(d)

QCD = m−1
B ) of the color electric flux

emanating from the color isocharges. The whole QCD vacuum, as a result of the
dynamical breaking of magnetic symmetry, then acquires the flux tube structure
which imparts it the perfect dual superconducting nature. The magnitude of the
associated dual Meissner effect, responsible for the phase transition from normal
to flux tube phase, is thus determined by the vector mass mode of the condensed
vacuum. The energy content of the flux tube given by Eq. (18) may further be
expressed in terms of functions defined by Eqs. (19)–(21) in the following form:

E(m)(K,H ) = I(m)φ
2
0 ≡ I(m)

αs

8π
m2

B, (27)

where

I(m) =
∫

2πr dr

[
(K ′)2

r2
+ (H ′)2+ 1

r2
(K + n)2H 2 + 3

16παs

(1 + H 4(4 ln H − 1))

]
.

(28)

For the further analysis of the confinement mechanism in terms of the Regge
trajectories and the associated confinement potential, let us use the expression
(27) to obtain the contributions to the classical mass and the angular momentum
of the color isocharges (quarks) as massless and spinless particles sitting at the
opposite ends (r1 and r2) of the flux tube (with its length, R = r1 − r2), where
each point at a distance R0 from the center of the tube has a local velocity equal
to v = 2R0

R
in natural system of units (Chew and Frautschi, 1961; Gasiorowicz

and Rosner, 1981; Regge, 1959). With these considerations, the classical mass
M(m) (relativistically) of the flux tube may be derived in the form given as

M(m) = 2
∫ R

2

0
dR0

E(m)(K,H )

(1 − v2) 1
2

= I(m)
αs

16
m2

BR. (29)

Further, the total angular momentum of the flux tube is the angular momentum
(orbital) without any spin contribution from quarks (as the oscillations caused by
the monopole field in dual QCD vacuum are taken to be very small), and is given by

J (m) = 2
∫ R

2

0
dR0

E(m)(K,H )v

(1 − v2)
1
2

= αs

64
m2

BR2. (30)
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Comparing Eqs. (29) and (30), we get the inter-relationship between the total
angular momentum and the classical mass of the flux tube in the following form:

J (m) = 4

I(m)αsm
2
B

M2
(m). (31)

It leads to the linear relationship between J (m) and M2
(m) in the present flux tube

model and such trajectories followed by mesons may be identified as the Regge
trajectories if we identify

4

I(m)αsm
2
B

M2
(m) = α′, (32)

as the Regge slope parameter in the present dual QCD model. It demonstrates that
the linear pattern of Regge trajectories in dual QCD collectively depends on the
glueball masses and strong coupling which incidently has the running (increasing)
behavior in low energy region. For the fixed glueball masses, it also predicts the
appearance of the trajectories of lower slopes for the couplings in deep infrared
sector which is expected to incorporate the mesons containing heavy quarks only.
Further, the linearity of the relation (31) also confirms the linear confining nature
of the associated confinement potential which depends on the dual gluon mass in
a natural way.

4. DYONIC EXCITATIONS AND THE CONFINING
STRUCTURE OF DUAL QCD

In view of the importance of the dyonic objects in current non-Abelian gauge
theories (Akamedov, 1998; Gonzakz-Arroyo and Simonov, 1996; Julia and Zee,
1975; Prasad and Sommerfield, 1975; Schierholtz, 1995; Simonov, 1996; Witten,
1983) including QCD, let us extend the analysis presented in the previous section
to the case where the topological object (monopole) carries an additional degree of
freedom in terms of the nonvanishing temporal part of the gauge field. Retaining
the temporal part B

(d)
0 in Eq. (12), in fact, excites the electric degree of freedom

of the fundamental monopole which imparts it a definite nonzero electric charge
and transforms to a dyonic object. Consequently, the dynamical breaking of the
magnetic symmetry leads to the dyonic condensation of QCD vacuum which has
definite bearing on the process of (color) confinement. Using B

(d)
0 = B0(ρ) along

with the ansatz given by Eqs. (12) and (13) in the previous section, the net electric
charge associated with the resulting dyonic excitations is given by

Qe =
∫

dSiB0i = 2Qm
2
∫

d2x B0χ
2, (33)

where Qm = 4π
g

is the quantized magnetic charge. Further, the additional field
equation, in addition to those given by Eq. (14) (with an additional term
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(4πg−1B0)2χ ) and (15), for nonvanishing B0 is then obtained by using the
Eqs. (10)–(13) in the following form:

1

ρ

d

dρ

(
ρ

dB0

dρ

)
− 32π2

g2
B0χ

2 = 0, (34)

where the appropriate boundary condition for B0 is given by

B0(ρ) = 0, for ρ → 0 or ∞. (35)

In addition to the Nielsen–Olesen ansatz given by the Eqs. (20) and (21), taking
the following ansatz for B0(ρ) in terms of a function J (r),

B0(ρ) = 2
√

3

g
φ0J (r), (36)

the field Eq. (34) may be expressed in a more simple form as

J ′′ + J ′

r
− �JH2 = 0, (37)

where the function J (r) satisfies the conditions, J (r) → 0 or ∞ for the stability
reasons. This equation along with those given by Eqs. (22) and (23) then governs
dynamics of the dyonically condensed QCD vacuum and they ultimately leads to
the dyonic flux tube structure to the dual QCD vacuum in its dynamically broken
phase. With these considerations, the energy per unit length of the dyonic flux
tube in the condensed QCD vacuum may be derived in the following form:

E(D)(K,H, J ) = E(m)(K,H ) + E(e)(J,H ), (38)

where E(m)(K,H ) is given by Eq. (26) and E(e)(J,H ) is given by

E(e)(J,H ) = 2πφ2
0

∫ ∞

0
r dr (2J

′2 + J 2H 2), (39)

which is the additional contribution as a result of the excitation of the electric
degree of freedom of the fundamental monopole. Using the Eq. (37), it may be
further expressed as

E(D)(K,H, J ) = [I(m)(K,H ) + I(e)(J,H )]φ2
0

= [I(m)(K,H ) + I(e)(J,H )]
αs

8π

(
m

(D)
B

)2
, (40)

where

I(e) = 2π

∫ ∞

0
r dr (2J ′2 + J 2H 2). (41)

The mass m
(D)
B here refers to the dyonic glueball mass which differs from its pure

magnetic counterpart as the φ0 now represents the VEV of the dyonic field. These
considerations, in the present case, thus lead to the contribution to classical mass
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and the angular momentum of the dyonic flux tube with massless and spineless
quarks at its opposite ends, in the following form:

M(D) = [I(m) + I(e)]
αs

16

(
m

(D)
B

)2
R, (42)

J (D) = αs

64

(
m

(D)
B

)2
R2, (43)

which leads to a linear relationship as

J (D) = 4
[I(m) + I(e)]−1

αs

(
mD

B

)2 M2
(D). (44)

It represents the Regge trajectories if the coefficient,

4
[I(m) + I(e)]−1

αs

(
mD

B

)2 M2
(D) = β, (45)

is identified as the Regge slops parameter (RSP) in a conventional way. At first
instance, it demonstrates the overall decreases in the RSP (β < α′) as a result of
the dyonic excitations over its pure magnetic counterpart. Consequently, when the
dyonic glueball masses are not much different than the magnetic glueball masses,
the dyonic excitation of the condensed QCD vacuum is expected to produce the
confining potential so as to favor the mesons with heavy quark flavors. On the
other hand, for maintaining both the RSP (α′ and β) to its well-known value, i.e.,

α′ = β = 0.93 GeV−2,

the Eq. (45) indicates that the change of the slope in dyonic case must be then
compensated by an decrease in dyonic glueball mass which is then marked by
an overall decrease in VEV of the dyonic field. Under such circumstances, the
confinement parameters (flux penetration, coherence etc.) of the dyonically con-
densed QCD vacuum show an enhancement (as they are inversely proportional
to the glueball masses) such that a more strong confinement is reflected with the
dyonic excitations in condensed QCD vacuum. It demonstrates that the dyonic
condensation of QCD vacuum is potentially capable of predicting new hadron
trajectories on one hand and put a step forward to provide a mechanism for the
absolute confinement of color in QCD on other.

5. CONCLUSIONS

Using the magnetic symmetry structure of QCD vacuum, the flux tube formu-
lation has been developed without and with the excitation of the electric degree of
freedom of the fundamental monopole. The dynamical breaking of the magnetic
symmetry has been shown to leave the QCD vacuum in magnetically condensed
dual superconducting state which imparts it the properties necessary for confining
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the color electric sources. In fact, in the strong-coupling limit, where the mag-
netic symmetry is dynamically broken, the confinement forces are set in and the
system passes into the flux tube phase. It indicates that the quark pairs in such
superconducting dual QCD vacuum joined by the flux filament of purely magnetic
or dyonic nature, acquire a stable configuration (as there is no way for the flux
to leak away) which has the behavior similar to that of the linearly rising hadron
trajectories. The field equations given by Eqs. (22) and (23) and (37) along with
(22) and (23) govern the flux tube structure for the cases of pure monopole and
dyonic condensation respectively in dual QCD vacuum. Such flux tubes and the
resulting confining nature of the dual QCD vacuum is identified by the appearance
of the vector mass mode of the condensed vacuum which reflects itself in the
form of the magnetic and dyonic glueballs in the two cases respectively. The flux
tube energy derived in terms of the Eq. (27) for pure monopole condensed QCD
vacuum case, leads to a linear relationship between angular momentum and the
classical mass square as given by Eq. (31) which identifies the Regge slope param-
eter in terms of the parameters (αs and mB) of dual QCD vacuum as expressed by
Eq. (32). It confirms the linear potential for the confinement of color isocharges in
the theory. For the known light quark meson Regge trajectories, the value of slope
parameter (≈0.93 GeV−2) may be used to compute the glueball masses leading to
the linear confining structure to dual QCD vacuum. On the other hand, the revival
of the electric excitation of the fundamental monopole is shown to lead to the
dyonically condensed QCD vacuum, the flux tube structure of which is governed
by the additional Eq. (37) in association with Eqs. (22) and (23). The dyonic flux
tube energy expression derived in terms of the Eqs. (38) and (40) shows an increase
by an additional factor given by Eq. (39) when compared to its pure monopole
counterpart. It leads to the slight decrease in Regge slope parameter expressed by
Eq. (45) as a result of the electric excitation of the monopole. The effect is, in fact,
just opposite to the case of the velocity dependent potential (which is important
for mesons containing light quarks) where the slope of Regge tarjectories tends
to increase. The increase in flux tube energy for the dyonically condensed QCD
vacuum and the resulting decrease in the dyonic glueball masses for the fixed
RSP, however tend to enhance the color electric flux penetration and condensed
vacuum coherence parameters with the increase in confining potential strength in
comparison to the pure monopole condensation of QCD vacuum. Further, the real
analysis of the Regge slope parameter in dual QCD need to include the dynami-
cal quarks which involve the contribution from the associated velocity dependent
potentials also and shall be dealt separately.
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